Isolation, Integration, and Culture of Human Mature Adipocytes Leveraging Organ-on-Chip Technology

Introduction

Obesity and obesity-related co-morbidities are on the rise globally, necessitating the development of novel treatments. White adipose tissue (WAT) is a key regulator of whole-body metabolism and energy balance, as well as a key role in the development of insulin resistance and type 2 diabetes.

This study describes a new technique to isolate and culture mature human adipocytes. White adipose tissue (WAT) dysregulation plays a central role in the development of insulin resistance and type 2 diabetes (T2D). To develop new treatments for T2D, more physiologically relevant in vitro adipocyte models are required.

Abstract

The authors state that “Research on white adipose tissue (WAT), which constitutes one-fifth to one-half of the total body mass of a human’s body, has gained more and more interest and attention in the era of “diabesity”.

In vitro research on mature human WAT is hampered by many challenges and, hence, a majority of WAT-related research is conducted using animal models as well as clinical observations and genome-wide association studies (GWAS), both featuring limitations in terms of translatability and potential for experimental interventions, respectively.

Here, we describe methods to isolate primary mature human adipocytes from biopsies and to fabricate tailored organ-on-chip platforms for the long-term culture of WAT constructs.”

Source

Rogal J, Roosz J, Loskill P. Isolation, Integration, and Culture of Human Mature Adipocytes Leveraging Organ-on-Chip Technology. Methods Mol Biol. 2022;2373:297-313. doi: 10.1007/978-1-0716-1693-2_18. PMID: 34520020.

admin_inno

Recent Posts

Multiorgan Microphysiological Systems as Tools to Interrogate Interorgan Crosstalk and Complex Diseases

Introduction MPS (Multiorgan Microphysiological Systems) have evolved from tools to reduce animal experimentation and improve…

3 years ago

Microfluidic organ-on-chip system for multi-analyte monitoring of metabolites in 3D cell cultures

Introduction The researchers created a microfluidic organ-on-chip solution with integrated electrochemical microsensor arrays enabling compartmentalized…

3 years ago

A new microfluidic method enabling the generation of multi-layered tissues-on-chips using skin cells as a proof of concept

Introduction The state of the art for tissues-on-chips using skin cells had been lacking for…

4 years ago